CS 188: Artificial Intelligence
Lecture 19: Decision Diagrams
Pieter Abbeel --- UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell Andrew Moore

Decision Networks

Action selection:

- Instantiate all evidence
- Set action node(s) each possible way
- Calculate posterior for all parents of utility node, given the evidence
- Calculate expected utility for each action
- Choose maximizing action

Example: Decision Networks

Umbrella $=$ leave					
$\mathrm{EU}(\text { leave })=\sum P(w) U(\text { leave }, w)$					
$=0.7 \cdot 100+0.3 \cdot 0=70$					
Umbrella $=$ take					
$\mathrm{EU}(\text { take })=\sum P(w) U(\text { take }, w)$					
		,	A	W	U(A,W)
$=0.7 \cdot 20+0.3 \cdot 70=35$	W	$\mathrm{P}(\mathrm{W})$	leave	sun	100
	sun	0.7	leave	rain	0
Optimal decision = leave	rain	0.3	take	sun	20
$\operatorname{MEU}(\varnothing)=\max \operatorname{EU}(a)=$			take	rain	70

Example: Decision Networks

Value of Information

- Idea: compute value of acquiring evidence
- Can be done directly from decision network
- Example: buying oil drilling rights
- Two blocks A and B, exactly one has oil, worth k
- You can drill in one location
- Prior probabilities 0.5 each, \& mutually exclusive
- Drilling in either A or B has EU $=k / 2, M E U=k / 2$
- Question: what's the value of information of O ? - Value of knowing which of A or B has oil
- Value is expected gain in MEU from new info
- Survey may say "oil in a" or "oil in b," prob 0.5 each

DrillLoc				
OilLoc				
0				
	P	D	0	U
a	1/2	a	a	k
b	1/2	a	b	0
		b	a	0
		b	b	k

- If we know OilLoc, MEU is k (either way)
- Gain in MEU from knowing OilLoc?
- $\operatorname{VPI}($ OilLoc $)=k / 2$
- Fair price of information: k/2

VPI Example: Weather

MEU with no evidence
$\operatorname{MEU}(\varnothing)=\max _{a} \operatorname{EU}(a)=70$

MEU if forecast is bad
$\operatorname{MEU}(F=\operatorname{bad})=\max _{a} \operatorname{EU}(a \mid \mathrm{bad})=53$
MEU if forecast is good
$\operatorname{MEU}(F=$ good $)=\max \operatorname{EU}(a \mid$ good $)=95$
Forecast distribution

$$
\begin{array}{|c|c|}
\hline \mathrm{F} & \mathrm{P}(\mathrm{~F}) \\
\hline \text { good } & 0.59 \\
\hline \text { bad } & 0.41 \\
\hline
\end{array} \begin{array}{r}
0.59 \cdot(95)+0.41 \cdot(53)-70 \\
77.8-70=7.8 \\
\operatorname{VPI}\left(E \mid e^{\prime}\right)=\left(\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \mathrm{MEU}\left(e, e^{\prime}\right)\right)-\operatorname{MEU}(e)
\end{array}
$$

Value of Information

- Assume we have evidence $\mathrm{E}=e$. Value if we act now $\operatorname{MEU}(e)=\max _{a} \sum_{s} P(s \mid e) U(s, a)$
- Assume we see that $E^{\prime}=e^{\prime}$. Value if we act then: $\operatorname{MEU}\left(e, e^{\prime}\right)=\max _{a} \sum_{s} P\left(s \mid e, e^{\prime}\right) U(s, a)$
- BUT E' is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E^{\prime} is revealed and then we act: $\operatorname{MEU}\left(e, E^{\prime}\right)=\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \operatorname{MEU}\left(e, e^{\prime}\right)$
- Value of information: how much MEU goes up by revealing E ' first then acting, over acting now:
 $\operatorname{VPI}\left(E^{\prime} \mid e\right)=\operatorname{MEU}\left(e, E^{\prime}\right)-\operatorname{MEU}(e)$

VPI Properties

- Nonnegative
$\forall E^{\prime}, e: \operatorname{VPI}\left(E^{\prime} \mid e\right) \geq 0$
- Nonadditive ----consider, e.g., obtaining E_{j} twice

$$
\operatorname{VPI}\left(E_{j}, E_{k} \mid e\right) \neq \operatorname{VPI}\left(E_{j} \mid e\right)+\operatorname{VPI}\left(E_{k} \mid e\right)
$$

- Order-independent

$$
\begin{aligned}
\operatorname{VPI}\left(E_{j}, E_{k} \mid e\right) & =\operatorname{VPI}\left(E_{j} \mid e\right)+\operatorname{VPI}\left(E_{k} \mid e, E_{j}\right) \\
& =\operatorname{VPI}\left(E_{k} \mid e\right)+\operatorname{VPI}\left(E_{j} \mid e, E_{k}\right)
\end{aligned}
$$

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You' re playing the lottery. The prize will be $\$ 0$ or $\$ 100$. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

Example: Ghostbusters

- In (static) Ghostbusters:
- Belief state determined by evidence to date $\{\mathrm{e}\}$
- Tree really over evidence sets
- Probabilistic reasoning needed to predict new evidence given past evidence

- Solving POMDPs
- One way: use truncated
expectimax to compute exproximate value of actio
- What if you only considered busting or one sense followed by a bust?
- You get a VPI-based agent!

- General solutions map belief functions to actions
- Can divide regions of belief space set of belief functions) into policy regions (gets complex quickly)
- Can build approximate policies using discretization methods
- Can factor belief functions in various ways
- Overall, POMDPs are very (actually PSACE-) hard

- Most real problems are POMDPs, but we can rarely solve then in general!

